TITLE OF PROPOSED PROJECT: ANALYSIS OF EVACUATION CLEARANCE TIME UNDER MEGAREGION DISASTER THREATS

STRATEGIC GOAL(S) ADDRESSED: EVACUATION

CONSORTIUM MEMBER: LSU

TOTAL PROJECT BUDGET: $87,484

PRINCIPAL INVESTIGATOR: BRIAN WOLSHON, PHD, PE
 PHONE NUMBER: 225-578-5247
 EMAIL ADDRESS: BRIAN@RSIP.LSU.EDU

HAS THIS PROPOSAL BEEN SUBMITTED FOR FUNDING ELSEWHERE? NO

DID THIS PROPOSAL RECEIVE FUNDING FROM ANOTHER SOURCE? NO

DOES THIS PROPOSED RESEARCH INVOLVE THE USE OF HUMAN SUBJECTS? NO

WILL THIS PROPOSED RESEARCH INVOLVE OTHER ORGANIZATIONS AS PARTNERS? NO

PROJECT MONITOR NAME, ORGANIZATION, ADDRESS AND TELEPHONE NUMBER:
 BRANT MITCHELL
 STEPHENSON DISASTER MANAGEMENT INSTITUTE
 LOUISIANA STATE UNIVERSITY
 BATON ROUGE, LOUISIANA 70803
 225-578-0238

ABSTRACT OF PROJECT:
Over the past decade, there has been a growing consensus among long range climatological forecasters that the earth is experiencing significant changes in its climate. These climatological changes have also been suggested to be linked to a rise in ocean sea levels as well as the likelihood for an increase in the strength and frequency of catastrophic tropical weather systems like hurricanes. When this is coupled with enormous population growth along the coastal regions throughout the world, which are now developing into megaregions, a significant potential exists for the occurrence of catastrophic disasters of heretofore inexperienced proportions that can threaten millions of people. Megaregion evacuations are very important to emergency managers. The use of clearance time intervals can be applied for evacuation
planning purposes. Therefore, this research aims to investigate evacuation clearance times for different evacuation demands at megaregion evacuation levels.
Project Problem Statement

Over the past decade, there has been a growing consensus among long range climatological forecasters that the earth is experiencing significant changes in its climate. These climatological changes have also been suggested to be linked to a rise in ocean sea levels as well as the likelihood for an increase in the strength and frequency of catastrophic tropical weather systems like hurricanes. When this is coupled with enormous population growth along the coastal regions throughout the world, which are now developing into megaregions, a significant potential exists for the occurrence of catastrophic disasters of heretofore inexperienced proportions that can threaten millions of people.

Megaregion evacuations are very important to emergency managers. The use of clearance time intervals can be applied for evacuation planning purposes. Therefore, this research aims to investigate evacuation clearance times for different evacuation demands at megaregion evacuation levels.

Background

Traffic simulation modeling has become a useful tool for evacuation traffic analysis since the late 1970’s. The accident at the Three Mile Island nuclear power plants triggered an urgent need to study the time needed for people to evacuate from endangered areas. The first simulation model for evacuation, NETVAC, was developed by Sheffi [1], which is a macroscopic model for simulating the traffic patterns during an emergency evacuation. It was used to estimate the evacuation clearance time for different nuclear power plants. NETVAC is sensitive to network topology, intersection design and control, and different traffic management policies. However, as it was the first model developed for evacuation analysis purposes, the model is unable to handle large networks of greater than 1500 links. Also, the model can only be used for design and planning purposes rather than descriptive analysis. Since then, evacuation time estimates (ETEs) for nuclear power plants has become an interest to researchers. The Nuclear Regulatory Commission conducted research on techniques for estimating evacuation times at nuclear power plants [3]. This analysis, together with work by Federal Emergency Management Agency contractors, became the basis for the ETE guidance [4]. However, ETEs are only one way to analyze evacuation planning under emergencies. ETEs were not capable of facing the complex situations with evacuation scenarios even though evacuation clearance time estimation is of critical importance to the public authorities until now.

With the realization of the importance of evacuation planning for mass population, developing pre evacuation plans for nuclear power plants [5], man-made crises, and natural disasters has become a popular research area since the 1980s. In the 1990’s, after a number of catastrophic hurricanes hitting the coast line of the U.S., more researchers have shifted to hurricane evacuation modeling and the behavior of evacuees under such scenarios. E.J. Baker studied the hurricane evacuation behavior based on the sample surveys following approximately 12 hurricanes from 1969 to 1989 in many states from Texas to Massachusetts. He found that risk areas and actions by the public played the most prominent role in affecting public response [9]. During the same time frame, Frank Southworth developed a five step process for regional evacuation modeling [10]. The process involved vehicle trip generations, trip departure times, trip destinations, and trip route selection modeling.

Since the September 11, 2001 attack in the U.S., mass evacuation due to terrorist invasions is getting more attention. Due to other events such as the tsunamis and otherwise-caused floods in Japan; the wild fires in Australia; and the earthquake in China, evacuation in these countries typically focuses on
specific types of evacuation only. For instance, rising sea level and the low elevation line in the Netherlands has led to research about flood evacuation research and applications [11]. In the U.S., the vulnerability to hurricanes for the Gulf Coast region, Texas and Louisiana has prompted research in hurricane evacuation modeling and traveler behavior.

Objectives of Study

The main goal of this research is to investigate the evacuation clearance times for different evacuation demands at megaregion evacuation levels.

1. Introduce the concept of evacuation clearance time and the methods used to calculate the clearance times.
2. Using the first mega region model as a basis, simulate different emergency scenarios on the mega region model Platform.
3. Calculate clearance times for each scenario and then analyze the times using mathematical methodology. Also, the distribution of clearance times will be analyzed. It is expected that the evacuation clearance times will follow normal distribution, even though the evacuation demand varies. However, it is anticipated that the percentage of vehicles able to complete their trips differs a lot in response to varied evacuation demand.
4. Analyze the resulting clearance times and apply this knowledge to aid with evacuation planning.

Work Plan

Task 1 – Review of the Literature
Conduct a Literature and State-of-the-Practice Review regarding evacuation clearance times and calculation methods.

Task 2 – Emergency Scenario Simulation
Using the first mega region model as a basis, simulate different emergency scenarios on the mega region model Platform.

Task 3 – Clearance Time Calculations and Analysis
Calculate clearance times for each scenario and then analyze the times using mathematical methodology. Also, the distribution of clearance times will be analyzed. It is expected that the evacuation clearance times will follow normal distribution, even though the evacuation demand varies. However, it is anticipated that the percentage of vehicles able to complete their trips differs a lot in response to varied evacuation demand.

Task 4 – Analysis and Conclusion
Analyze the resulting clearance times and apply this knowledge to aid with evacuation planning.

Staffing Plan

The project will be completed under the direction of Dr. Brian Wolshon. Dr. Wolshon is a Professor in the Department of Civil and Environmental Engineering at Louisiana State University,
specializing in the field of highway design and traffic engineering. His research covers several areas in highway transportation, most notably issues related to the planning and management of traffic during mass evacuations and in particular the application of reversible traffic operations, the acquisition of road-weather information and the development of regional micro-scale evacuation traffic models of various metropolitan areas.

It is also anticipated that the primary work tasks will be completed by a research associate. The research associate will be employed to develop models, analyze data findings, and create spreadsheets. It is also assumed that the methods and outcomes developed from this project will also be used to support a doctoral dissertation and a master’s thesis.

Schedule of Activities

It is proposed that the project will be completed within a period of 18 months (June 1, 2013 to December 31, 2014).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
</tr>
<tr>
<td>Task 3</td>
<td></td>
</tr>
<tr>
<td>Task 4</td>
<td></td>
</tr>
</tbody>
</table>

Anticipated Deliverables

The results of this work will be documented in a series of technical papers that will be submitted to peer-reviewed journal for publication. The intended end users of the products and deliverables of this project are envisioned to be transportation and emergency management agencies involved in the planning and evaluation of evacuations in the Gulf region. Specifically, these would initially include the Louisiana and Texas Departments of Transportation and the Louisiana Governor’s Office of Homeland Security and Emergency Preparedness and Texas Division of Emergency Management. Ultimately, these techniques and results would be adapted for use in other locations around the U.S. (and internationally) and for other types of natural and manmade hazards.

Plan to Pursue Additional Funding after Conclusion of SWUTC Project

At the conclusion of this project, actions will be taken to extend the research effort. These actions may include examining ways to apply this research to other megaregions around the world. Potential sponsors for the additional research may include Louisiana Department of Transportation and Development or Stephenson Disaster Management Institute.
References

